• Users Online: 301
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2019  |  Volume : 62  |  Issue : 3  |  Page : 123-130

Action of chlorzoxazone on Ca2+movement and viability in human oral cancer cells


1 Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
2 Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung; Department of Pharmacy, Tajen University, Pingtung, Taiwan
3 Department of Metabolism, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
4 Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
5 Department of Pharmacy, Tajen University, Pingtung, Taiwan
6 Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
7 Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan

Correspondence Address:
Dr. Chiang-Ting Chou
Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi 61363
Taiwan
Dr. Chung-Ren Jan
Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362
Taiwan
Dr. Pochuen Shieh
Department of Pharmacy, Tajen University, Pingtung 90741
Taiwan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/CJP.CJP_20_19

Rights and Permissions

Chlorzoxazone is a skeletal muscle relaxant. However, the effect of chlorzoxazone on intracellular Ca2+ concentrations ([Ca2+]i) in oral cancer cells is unclear. This study examined whether chlorzoxazone altered Ca2+ signaling and cell viability in OC2 human oral cancer cells. [Ca2+]iin suspended cells was measured using the fluorescent Ca2+-sensitive dye fura-2. Cell viability was examined by water-soluble tetrazolium-1 assay. Chlorzoxazone (250–1000 μM) induced [Ca2+]irises in a concentration-dependent manner. Ca2+ removal reduced the signal by approximately 50%. Mn2+ has been shown to enter cells through similar mechanisms as Ca2+ but quenches fura-2 fluorescence at all excitation wavelengths. Chlorzoxazone (1000 μM) induced Mn2+ influx, suggesting that Ca2+ entry occurred. Chlorzoxazone-induced Ca2+ entry was inhibited by 20% by inhibitors of store-operated Ca2+ channels and protein kinase C (PKC) modulators. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) inhibited chlorzoxazone-evoked [Ca2+]irises by 88%. Conversely, treatment with chlorzoxazone-suppressed TG-evoked [Ca2+]irises 75%. Chlorzoxazone induced [Ca2+]irises by exclusively releasing Ca2+ from the endoplasmic reticulum. Inhibition of phospholipase C (PLC) with U73122 did not alter chlorzoxazone-induced [Ca2+]irises. PLC activity was not involved in chlorzoxazone-evoked [Ca2+]irises. Chlorzoxazone at 200–700 μM decreased cell viability, which was not reversed by pretreatment with Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxy methyl. In sum, in OC2 cells, chlorzoxazone induced [Ca2+]irises by evoking PLC-independent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Chlorzoxazone also caused Ca2+-independent cell death. Since [Ca2+]irises play a triggering or modulatory role in numerous cellular phenomena, the effect of chlorzoxazone on [Ca2+]iand cell viability should be taken into account in other in vitro studies.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed369    
    Printed27    
    Emailed0    
    PDF Downloaded90    
    Comments [Add]    

Recommend this journal