• Users Online: 1181
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 63  |  Issue : 1  |  Page : 15-20

Physiological stress against simulated 200-m and 500-m sprints in world-class boat paddlers


1 Department of Sports Science, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
2 Department of Pathology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
3 Institute of Sports Sciences, Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan

Correspondence Address:
Dr. Chia-Hua Kuo
Laboratory of Exercise Biochemistry, University of Taipei, Taipei
Taiwan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/CJP.CJP_87_19

Rights and Permissions

To characterize physiological stress response against simulated short-distance sprints among world-class paddlers. Thirteen dragon boat gold medalists performed 200-m and 500-m simulated race trials on a kayak ergometer in a randomized, counter-balanced, crossover fashion. During the 200-m and 500-m sprints, oxygen consumption (VO2) increased from 8.7 to 31.2 ml/kg/min and from 8.0 to 32.7 ml/kg/min within 60 s, respectively. A plateau of 35 ml/kg/min below maximal VO2(VO2max) (39.7 ± 6.3 ml/kg/min) was reached at 75 s during the 500-m sprint. Respiratory exchange ratio dropped from 1.21 ± 0.16 to 1.07 ± 0.12 and 1.28 ± 0.13 to 1.06 ± 0.16 at 45 s, and resurged to 1.17 and 1.28 at the end of 200-m and 500-m sprints with lactate concentration reached 13 ± 2 and 15 ± 2 mM. Aerobic energy contribution to paddling power increases from ~10% for the first 15 s to ~80% for the last 15 s during the 500-m trial. Postexercise plasma thiobarbituric acid reactive substances increased by 376% and 543% above baseline after 200-m and 500-m trials (P < 0.001, between trials), respectively, followed by quick returns to baseline in 30 min (P < 0.001). Increased plasma creatine kinase (+48%) was observed only after the 500-m trial (P < 0.001, between trials), not 200-m trial. Our data suggest that muscle damage occurred only when maximal sprinting exceeding 2 min, highlighting an importance of volume than intensity on exercise-induced muscle damage.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed915    
    Printed55    
    Emailed0    
    PDF Downloaded132    
    Comments [Add]    

Recommend this journal