• Users Online: 459
  • Print this page
  • Email this page
ORIGINAL ARTICLE
Year : 2020  |  Volume : 63  |  Issue : 2  |  Page : 68-76

Repetitively hypoxic preconditioning attenuates ischemia/reperfusion-induced liver dysfunction through upregulation of hypoxia-induced factor-1 alpha-dependent mitochondrial Bcl-xl in rat


1 School of Life Science, National Taiwan Normal University, Taipei, Taiwan
2 Department of Surgery, Division of General Surgery, Far-Eastern Memorial Hospital; Department of Electrical Engineering, Yuan Ze University, Taoyuan City, Taiwan

Correspondence Address:
Prof. Chiang-Ting Chien
No. 88, Sec. 4, Tingzhou Road, School of Life Science, National Taiwan Normal University, Taipei 11677
Taiwan
Prof. Tzu-Ching Chang
No. 88, Sec. 4, Tingzhou Road, School of Life Science, National Taiwan Normal University, Taipei 11677
Taiwan
Login to access the Email id

Source of Support: This work was supported in part by the National Science Council of the Republic of China (NSC96.2320.B.002.007 and NSC96.2221.E.002.256.MY3)., Conflict of Interest: None


DOI: 10.4103/CJP.CJP_74_19

Rights and Permissions

Repetitive hypoxic preconditioning (HP) enforces protective effects to subsequently severe hypoxic/ischemic stress. We hypothesized that HP may provide protection against ischemia/reperfusion (I/R) injury in rat livers via hypoxia-induced factor-1 alpha (HIF-1α)/reactive oxygen species (ROS)-dependent defensive mechanisms. Female Wistar rats were exposed to hypoxia (15 h/day) in a hypobaric hypoxic chamber (5500 m) for HP induction, whereas the others were kept in sea level. These rats were subjected to 45 min of hepatic ischemia by portal vein occlusion followed by 6 h of reperfusion. We evaluated HIF-1α in nuclear extracts, MnSOD, CuZnSOD, catalase, Bad/Bcl-xL/caspase 3/poly-(ADP-ribose)-polymerase (PARP), mitochondrial Bcl-xL, and cytosolic cytochrome C expression with Western blot and nitroblue tetrazolium/3-nitrotyrosine stain. Kupffer cell infiltration and terminal deoxynucleotidyl transferase-mediated nick-end labeling method apoptosis were determined by immunocytochemistry. The ROS value from liver surface and bile was detected by an ultrasensitive chemiluminescence–amplification method. Hepatic function was assessed with plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels. HP increased nuclear translocation of HIF-1α and enhanced Bcl-xL, MnSOD, CuZnSOD, and catalase protein expression in a time-dependent manner. The response of HP enhanced hepatic HIF-1α, and Bcl-xL expression was abrogated by a HIF-1α inhibitor YC-1. Hepatic I/R increased ROS levels, myeloperoxidase activity, Kupffer cell infiltration, ALT and AST levels associated with the enhancement of cytosolic Bad translocation to mitochondria, release of cytochrome C to cytosol, and activation of caspase 3/PARP-mediated apoptosis. HP significantly ameliorated hepatic I/R-enhanced oxidative stress, apoptosis, and mitochondrial and hepatic dysfunction. In summary, HP enhances HIF-1α/ROS-dependent cascades to upregulate mitochondrial Bcl-xL protein expression and to confer protection against I/R injury in the livers.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed289    
    Printed5    
    Emailed0    
    PDF Downloaded67    
    Comments [Add]    

Recommend this journal