• Users Online: 293
  • Print this page
  • Email this page
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
   Table of Contents - Current issue
Coverpage
July-August 2019
Volume 62 | Issue 4
Page Nos. 139-174

Online since Thursday, August 29, 2019

Accessed 705 times.

PDF access policy
Journal allows immediate open access to content in HTML + PDF
View as eBookView issue as eBook
Access StatisticsIssue statistics
RSS FeedRSS
Hide all abstracts  Show selected abstracts  Export selected to  Add to my list
ORIGINAL ARTICLES  

Adenine decreases hypertrophic effects through interleukin-18 receptor p. 139
Yi-Feng Yang, Yao-Jen Liang
DOI:10.4103/CJP.CJP_18_19  
Cardiac hypertrophy is the main cause of heart failure. Levels of circulating interleukin-18 (IL-18) have been reported to increase in congestive heart disease and cardiac hypertrophy. Relationships among IL-18 levels, IL-18 receptor (IL-18R) expression, and cardiac hypertrophy remain unclear. IL-18 can induce cardiac hypertrophy in cardiomyoblasts. We also studied IL-18R messenger RNA (mRNA) and protein expression through quantitative-polymerase chain reaction and Western blotting. Furthermore, we treated cardiomyoblasts with adenine, gold nanoparticles (AuNPs), and inhibitors to analyze the morphology and identify signaling pathways involved in cardiac hypertrophy. Moreover, we studied the effects of IL-18R small interfering RNA (siRNA) on signaling pathways through Western blotting. The mRNA expression of IL-18R in H9c2 cardiomyoblasts, which was induced by IL-18, increased significantly after 8 h, and the protein level increased significantly after 15 h. Morphological examination of H9c2 cardiomyoblasts showed that cell volume and cell diameter decreased after adenine pretreatment. Both p38 MAPK and PI3 kinase are biomarkers in the pathway correlated with cardiac hypertrophy. After treatment with inhibitors SB203580 and LY294002, the levels of p38 MAPK and PI3 kinase, respectively, decreased along with cell size and IL-18R expression. Treatment with adenine, but not AuNPs, reduced the levels of phosphorylated p38 and PI3 kinase expression more effectively than did treatment with the respective inhibitors alone. IL-18R siRNA significantly reduced cell size but not PI3 kinase expression and phosphorylation of p38 MAPK. However, adenine treatment reduced PI3 kinase expression after treatment with IL-18R siRNA. In this study, IL-18 induced cardiomyoblast hypertrophy through IL-18R upregulation, which was found to be related to p38 MAPK and PI3 kinase signaling. Adenine, but not AuNPs, showed antihypertrophic effects possibly because of decreased levels of signaling.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

Effect of taurine on ethanol-induced oxidative stress in mouse liver and kidney p. 148
Zofia Goc, Edyta Kapusta, Grzegorz Formicki, Monika Martiniaková, Radoslav Omelka
DOI:10.4103/CJP.CJP_28_19  
The purpose of this study was to investigate the effect of alcohol exposure on liver and kidney antioxidant systems in taurine exhibition during different time periods. Mice were divided into groups: I – control; II – alcohol (2.5 g/kg b.w.); III – taurine (42.84 mg/kg b.w.); and IV – alcohol + taurine. Treatments were provided for 24 h, 14 days, and 56 days. In the liver and kidney of the alcohol group, antioxidant enzyme (superoxide dismutase, catalase, and glutathione peroxidase) activities, reduced glutathione (GSH), and malondialdehyde (MDA) levels were decreased, as compared to the control group in all time periods. Taurine was found to be effectively inhibiting oxidative action of alcohol and increasing all the tested parameters in the liver (after 24 h) and kidney (after 24 h and 14 days). Moreover, the positive effect of taurine administration on GSH and MDA levels persisted in the kidneys of mice exposed to alcohol for 56 days. In conclusion, alcohol administration led to a significant influence on antioxidant system in the liver and kidney, but simultaneous intake of taurine, along with ethanol, partly attenuated the antioxidant changes in these organs.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

Aloperine suppresses human pulmonary vascular smooth muscle cell proliferation via inhibiting inflammatory response p. 157
Zhi Chang, Peng Zhang, Min Zhang, Feng Jun, Zhiqiang Hu, Jiamei Yang, Yuhua Wu, Ru Zhou
DOI:10.4103/CJP.CJP_27_19  
Abnormal pulmonary arterial vascular smooth muscle cells (PASMCs) proliferation is critical pathological feature of pulmonary vascular remodeling that acts as driving force in the initiation and development of pulmonary arterial hypertension (PAH), ultimately leading to pulmonary hypertension. Aloperine is a main active alkaloid extracted from the traditional Chinese herbal Sophora alopecuroides and possesses outstanding antioxidation and anti-inflammatory effects. Our group found Aloperine has protective effects on monocroline-induced pulmonary hypertension in rats by inhibiting oxidative stress in previous researches. However, the anti-inflammation effects of Aloperine on PAH remain unclear. Therefore, to further explore whether the beneficial role of Aloperine on PAH was connected with its anti-inflammatory effects, we performed experiments in vitro. Aloperine significantly inhibited the proliferation and DNA synthesis of human pulmonary artery smooth muscle cells (HPASMCs) induced by platelet-derived growth factor-BB, blocked progression through G0/G1to S phase of the cell cycle and promoted total ratio of apoptosis. In summary, these results suggested that Aloperine negatively regulated nuclear factor-κB signaling pathway activity to exert protective effects on PAH and suppressed HPASMCs proliferation therefore has a potential value in the treatment of pulmonary hypertension by negatively modulating pulmonary vascular remodeling.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta

The effect of visuospatial resolution on discharge variability among motor units and force–discharge relation p. 166
Yi-Ching Chen, Chia-Li Shih, Yen-Ting Lin, Ing-Shiou Hwang
DOI:10.4103/CJP.CJP_12_19  
Although force steadiness varies with visuospatial information, accountable motor unit (MU) behaviors are not fully understood. This study investigated the modulation of MU discharges and force–discharge relation due to variations in the spatial resolution of visual feedback, with a particular focus on discharge variability among MUs. Fourteen young adults produced isometric force at 10% of maximal voluntary contraction (MVC) through index abduction, under the conditions of force trajectory displayed with low visual gain (LVG) and high visual gain (HVG). Together with smaller and more complex force fluctuations, HVG resulted in greater variabilities of the mean interspike interval and discharge irregularity among MUs than LVG did. Estimated via smoothening of a cumulative spike train of all MUs, global discharge rate was tuned to visual gain, with a more complex global discharge rate and a lower force–discharge relation in the HVG condition. These higher discharge variabilities were linked to larger variance of the common drive received by MUs for regulation of muscle force with higher visuospatial information. In summary, higher visuospatial information improves force steadiness with more complex force fluctuations, underlying joint effects of low-pass filter property of the musculotendon complex and central modulation of discharge variability among MUs.
[ABSTRACT]  [HTML Full text]  [PDF]  [Mobile Full text]  [EPub]  [Sword Plugin for Repository]Beta