Chinese Journal of Physiology

ORIGINAL ARTICLE
Year
: 2020  |  Volume : 63  |  Issue : 4  |  Page : 171--178

Protein blend and casein supplementations before inactive phase similarly activate mechanistic target of rapamycin signaling in rat skeletal muscle


Tales Sambrano Vieira1, Ana P Pinto2, Gabriela Batitucci1, Alisson L da Rocha2, Hugo T Filho3, Dawit A Gonçalves4, Adelino Sanchez R da Silva5, Ellen Cristini de Freitas6 
1 Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of São Paulo, São Paulo, Brazil
2 Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
3 School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
4 Department of Physiology and Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo; Department of Physical Education, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
5 Department of Health Sciences, Postgraduate Program in Rehabilitation and Functional Performance, Ribeirão Preto Medical School; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
6 Department of Food and Nutrition, School of Pharmaceutical Sciences of Araraquara, State University of São Paulo, Araraquara; School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil

Correspondence Address:
Prof. Ellen Cristini de Freitas
School of Physical Education and Sport of Ribeirao Preto, University of Sao Paulo, Avenida Bandeirantes, 3900, Monte Alegre, 14040.907, Ribeirao Preto, Sao Paulo
Brazil

During overnight sleep, the longest postabsorptive and inactive phase of the day causes protein catabolism and loss. However, the daytime ingestion of dairy proteins has been shown to stimulate muscle protein synthesis and growth. This study compared the effects of pre-sleep supplementation of a protein blend (PB) composed of micellar casein (MCa) and whey protein (1:1) versus isolate MCa on the plasma levels of branched-chain amino acids (BCAAs) and the activation of the mechanistic target of rapamycin (mTOR) signaling, a critical intracellular pathway involved in the regulation of muscle protein synthesis. After 10 h of fasting during the active phase, rats were fed with a single dose of PB or MCa (5.6 g protein/kg of body mass) by gavage, and samples of blood and gastrocnemius muscle were collected at 30, 90, and 450 min. PB and MCa supplementations induced an increase (~3-fold, P < 0.001) of plasma BCAAs at 30 and 90 min. Most importantly, the stimulatory phosphorylation levels of mTOR and its downstream target p70 ribosomal protein S6 kinase (p70S6K) were similarly higher (~2.5-fold, P < 0.001) 30 and 90 min after MCa and PB. Plasma levels of leucine, isoleucine, valine, and overall BCAAs were correlated with the activation of mTOR (P < 0.001) and p70S6K (P < 0.001). MCa and PB supplementations before the inactive phase of rats resulted in an anabolic milieu in the skeletal muscle by inducing a transient increase in plasma BCAAs and a similar activation of the mTOR/p70S6K axis.


How to cite this article:
Vieira TS, Pinto AP, Batitucci G, da Rocha AL, Filho HT, Gonçalves DA, da Silva AS, de Freitas EC. Protein blend and casein supplementations before inactive phase similarly activate mechanistic target of rapamycin signaling in rat skeletal muscle.Chin J Physiol 2020;63:171-178


How to cite this URL:
Vieira TS, Pinto AP, Batitucci G, da Rocha AL, Filho HT, Gonçalves DA, da Silva AS, de Freitas EC. Protein blend and casein supplementations before inactive phase similarly activate mechanistic target of rapamycin signaling in rat skeletal muscle. Chin J Physiol [serial online] 2020 [cited 2020 Sep 21 ];63:171-178
Available from: http://www.cjphysiology.org/article.asp?issn=0304-4920;year=2020;volume=63;issue=4;spage=171;epage=178;aulast=Vieira;type=0