• Users Online: 120
  • Print this page
  • Email this page
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
  Most popular articles (Since November 28, 2018)

 
 
  Archives   Most popular articles   Most cited articles
 
Hide all abstracts  Show selected abstracts  Export selected to
  Viewed PDF Cited
REVIEW ARTICLE
Fibroblast growth factors: Potential novel targets for regenerative therapy of osteoarthritis
Tsung-Ming Chen, Ya-Huey Chen, H Sunny Sun, Shaw-Jenq Tsai
January-February 2019, 62(1):2-10
DOI:10.4103/CJP.CJP_11_19  
Osteoarthritis (OA) is a degenerative joint disorder and is the leading cause of disability of people, which negatively impact people's physical and mental health. Although OA causes great socioeconomic burden and individual suffering, no effective treatment options are provided so far. This is partially resulted from poor regenerative activity of articular cartilage and our incomplete understanding of the underlying mechanism of OA. Traditional drug therapies such as acetaminophen and opioids are effective in relieving pain but do not reverse cartilage damage and are often associated with adverse events. Therefore, it is necessary to find effective OA drugs. In recent years, novel regenerative therapies have received much attention because they can effectively promote tissue repair and regeneration. The fibroblast growth factor (FGF) signaling has been suggested to involve in cartilage homeostasis for decades. The current research shows that sprifermin/recombinant FGF18 significantly reduces the loss of cartilage thickness and volume without serious side effects, thus warrants a continued research for potential new medications of OA. This review mainly highlights the current research progress on FGFs and FGF receptors as a potential therapeutic target for OA.
  178 44 -
ORIGINAL ARTICLES
Atrial electrical remodeling induced by chronic ischemia and inflammation in patients with stable coronary artery disease
Răzvan Constantin Serban, Alkora Ioana Balan, Marcel Perian, Irina Pintilie, Cristina Somkereki, Adina Huţanu, Alina Scridon
January-February 2019, 62(1):11-16
DOI:10.4103/CJP.CJP_2_19  
The pathophysiology of coronary artery disease (CAD) includes low-grade chronic inflammation. At its turn, inflammation is known to promote myocardial structural remodeling and to increase vulnerability to atrial arrhythmias. Meanwhile, the impact of chronic inflammation on the electrophysiological properties of the atria remains unknown. We aimed to evaluate the impact of low-grade chronic inflammation on atrial electrophysiology in patients with stable CAD undergoing elective coronary artery bypass grafting (CABG). Circulating levels of several inflammatory, angiogenesis, and endothelial dysfunction markers were determined 1 day before CABG in 30 consecutive CAD patients. Right atrial appendage samples were collected during the CABG procedure; action potential recordings were performed in six study patients using the microelectrode technique. Interleukin (IL)-1b (r = 1.00, P = 0.01), IL-6 (r = 0.98, P < 0.01), vascular endothelial growth factor (VEGF) (r = 0.98, P < 0.01), and hemoglobin (r = 0.98, P < 0.01) levels significantly positively correlated with the duration of atrial depolarization. Consequently, IL-6, VEGF, and hemoglobin (r = −0.86, P = 0.03 for all) levels significantly negatively correlated with the velocity of atrial depolarization. There was no significant correlation between any of the studied markers levels and any of the other parameters of the action potential (all P > 0.05). The present study is the first to demonstrate that in patients with stable CAD, chronic inflammation and ischemia are associated with pro-arrhythmic atrial electrical remodeling. These changes may contribute to the increased propensity to postoperative atrial arrhythmias seen in some of the patients undergoing CABG.
  159 35 -
EDITORIAL
New face and faster online publication process
Po-Shiuan Hsieh
January-February 2019, 62(1):1-1
DOI:10.4103/CJP.CJP_6_19  
  138 27 -
ORIGINAL ARTICLES
Possible nitric oxide mechanism involved in the protective effect of L-theanine on haloperidol-induced orofacial dyskinesia
Cheng-Chia Tsai, Mao-Hsien Wang, Kuo-Chi Chang, Hung-Sheng Soung, Chih-Chuan Yang, Hsiang-Chien Tseng
January-February 2019, 62(1):17-26
DOI:10.4103/CJP.CJP_8_19  
Having powerful antioxidative properties, L-theanine (LT), one of the major amino acid components in green tea, has potent anti-oxidative and neuroprotective effects. In this study, we examined the potential protective effects of LT on haloperidol (HAL)-induced orofacial dyskinesia (OD) in rats. HAL treatment (1 mg/kg intraperitoneally for 21 days) induced OD; significant increases (P < 0.001) in the frequency of vacuous chewing movement and tongue protrusion as well as the duration of facial twitching. LT treatment (100 mg/kg orally for 35 days, starting 14 days before HAL injection) was able to prevent most of the HAL-induced OD. LT treatment was also able to reduce the lipid peroxidation production and nitric oxide (NO) level, and enhance the antioxidation power in striatum from rats with HAL treatment. In order to examine the implication of NO pathway activity in HAL treatment, either NO precursor (L-arginine) or NO synthase inhibitor (L-NAME) was co-pretreated with LT; NO precursor treatment eliminated the protective effect of LT, in contrast to that NO synthase inhibitor treatment significantly potentiated the LT effects on behavioral and biochemical protection in HAL-treated rats. These results suggested that the NO pathway was implicated, at least in part, in the HAL-induced OD, as well as in the protective effect of LT in treating HAL-induced OD. The above evidence provides a clinically relevant value for LT in delaying or treating tardive dyskinesia.
  100 21 -
Modulation of glycinergic inhibition on respiratory rhythmic hypoglossal bursting in the rat
Kun-Ze Lee, Ji-Chuu Hwang
January-February 2019, 62(1):27-34
DOI:10.4103/CJP.CJP_10_18  
The hypoglossal nerve displays respiratory rhythmic bursting and is composed of preinspiratory and inspiratory activity which is important in maintaining upper airway patency. The present study was designed to examine the modulatory role of glycinergic inhibition in respiratory rhythmic hypoglossal bursting. The activity of the phrenic nerve, as well as the medial and lateral branches of the hypoglossal nerve, was recorded simultaneously in urethane-anesthetized and mechanically ventilated adult rats in response to moderate and high levels of sustained lung inflation. The results demonstrated that inspiratory activity of the phrenic nerve gradually reduced with increasing lung inflation. The burst amplitude and discharge onset of the hypoglossal nerve branches were enhanced during moderate lung inflation but inhibited by high levels of lung inflation. These lung volume-mediated respiratory reflexes were abolished following a bilateral cervical vagotomy. In addition, intravenous administration of a glycine receptor antagonist (strychnine, 1 μmole/kg) attenuated preceding onset of rhythmic hypoglossal bursting but enhanced inspiratory hypoglossal burst amplitude during the baseline. Moreover, both excitatory and inhibitory effects of lung inflation on hypoglossal nerve activity were attenuated following a glycine transmission blockade. These results suggest that glycinergic inhibition modulated rhythmic hypoglossal bursting and was involved in mediating lung volume-induced respiratory reflexes.
  97 22 -
Low expression of pentraxin 3 and nuclear factor-like 2 implying a relatively longer overall survival time in gliomas
Hui-Hsuan Ke, Dueng-Yuan Hueng, Wen-Chiuan Tsai
January-February 2019, 62(1):35-43
DOI:10.4103/CJP.CJP_3_19  
Pentraxin 3 (PTX3) and nuclear factor-like 2 (Nrf2) are known to induce tumor progression in certain malignancies but act as tumor suppressors in other human neoplasms. In this study, we not only tested the association between PTX3 expression and the World Health Organization (WHO) tumor grading system but also evaluated overall patient survival under variable expression of PTX3 and Nrf2 in primary brain tumors (PBTs). Immunohistochemistry (IHC) was performed for PTX3 and Nrf2 in 10 nonneoplastic brain tissues and 197 PBTs. IHC scores were calculated as the degree of cytoplasmic and nuclear PTX3 and Nrf2 staining intensity multiplied by the percentage of positively stained tissue area. The correlation between PTX3 and Nrf2 IHC scores and tumor grades as well as overall survival time was analyzed by Pearson product-moment correlation and Kaplan–Meier estimate. According to our results, PTX3 IHC scores showed a positive correlation with the WHO grades of gliomas and meningiomas. In addition, we also observed that higher PTX3 expression was associated with poor prognosis in gliomas but not in meningiomas. The concordance between PTX3 and Nrf2 immunohistochemistry (IHC) scores was analyzed using linear regression analysis. When compared to groups with high IHC scores for either one or both biomarkers, gliomas with low expression of both PTX3 and Nrf2 showed significantly better prognosis. In conclusion, we demonstrated that high PTX3 expression implied aggressive tumor behavior and shorter survival time in glioma patients. In addition, our results also showed that gliomas with low PTX3 and Nrf2 immunohistochemical expression could imply a longer overall survival time. Therefore, the combination of lower PTX3 and Nrf2 immunohistochemical expression may be important in offering a better prognosis in gliomas, although the detailed mechanism is yet to be elucidated.
  68 15 -
ACKNOWLEDGMENTS TO REVIEWERS IN 2018
Acknowledgments to Reviewers in 2018

January-February 2019, 62(1):44-45
Full text not available  [PDF]  [Mobile Full text]  [EPub]
  28 15 -