Close
  Indian J Med Microbiol
 

Figure 1: Presence of glucose dose dependently reduced the proinflammatory cytokine production in lipopolysaccharide-activated macrophages. Differentiated THP-1 macrophages were cultured in standard media containing 0, 5, or 25 mM glucose (G0, G5, and G25, respectively). The cells were incubated in untreated (CON) condition or exposed to lipopolysaccharide (100 ng/ml) for 24 h, and the proinflammatory cytokine levels were measured. (a) Tumor necrosis factor-α, (b) interleukin-6 and (c) interleukin-8 production increased upon lipopolysaccharide exposure. The lipopolysaccharide-induced proinflammatory cytokine production was attenuated by glucose in a dosedependent manner. *P < 0.05 versus respective CON groups; #P < 0.05 versus lipopolysaccharide + G0 groups (n = 8/groups).

Figure 1: Presence of glucose dose dependently reduced the proinflammatory cytokine production in lipopolysaccharide-activated macrophages. Differentiated THP-1 macrophages were cultured in standard media containing 0, 5, or 25 mM glucose (G0, G5, and G25, respectively). The cells were incubated in untreated (CON) condition or exposed to lipopolysaccharide (100 ng/ml) for 24 h, and the proinflammatory cytokine levels were measured. (a) Tumor necrosis factor-α, (b) interleukin-6 and (c) interleukin-8 production increased upon lipopolysaccharide exposure. The lipopolysaccharide-induced proinflammatory cytokine production was attenuated by glucose in a dosedependent manner. *<i>P</i> < 0.05 versus respective CON groups; <sup>#</sup><i>P</i> < 0.05 versus lipopolysaccharide + G0 groups (<i>n</i> = 8/groups).