• Users Online: 44
  • Print this page
  • Email this page
Year : 2019  |  Volume : 62  |  Issue : 6  |  Page : 267-272

Contrasting actions of ginsenosides Rb1 and Rg1 on glucose tolerance in rats

1 Faculty of Sports Science and Technology, Mahidol University, Nakhonpathom, Thailand; Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
2 Exercise and Sport Sciences Development and Research Group, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
3 Laboratory of Regenerative Medicine in Sports Science, School of Physical Education & Sports Science, South China Normal University, Taichung, Taiwan
4 Graduate Institute of Basic Medicine, China Medical University, Taichung, Taiwan
5 Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan

Correspondence Address:
Prof. Chia-Hua Kuo
Laboratory of Exercise Biochemistry, University of Taipei, 101, Section 2, Jhong Cheng Road, Shihlin District, Taipei 111
Login to access the Email id

Source of Support: This study was supported by grants from the Ministry of Science and Technology, Taiwan; Nuliv Sciences, CA, USA; and University of Taipei, Taipei, Taiwan., Conflict of Interest: This work was funded to develop a supplement for Nuliv Science, Taiwan, and the USA.

DOI: 10.4103/CJP.CJP_61_19

Rights and Permissions

Ginsenoside profile of Panax ginseng is changing with season and cultivated soil. Yet, dose-response relationship of main ginsenosides on metabolic measures has not been documented in vivo. Here, we examined glucose and insulin responses after an oral glucose challenge (0.5 g/kg body weight) at various doses (0.01, 0.1, 1, and 10 mg/kg of body weight) under acute and chronic Rb1 and Rg1 supplemented conditions. The results show that Rb1 (0.01 and 0.1 mg/kg body weight) increased, whereas Rg1 (0.01 mg/kg body weight) decreased postprandial glucose levels compared with the Vehicle group (P < 0.05). This contrasting effect reduced as dose increased. Both Rb1 and Rg1 decreased the mitochondrial enzyme citrate synthase activity (P < 0.05) together with decreases in glycogen content in red gastrocnemius muscle and body temperature at low doses (P < 0.05), compared with the Vehicle group. These differences also diminished as dosage increases. For reliable ginseng research, dose standardization on Rg1 and Rb1 is essential based on their opposing action and peculiar dose-response relationship. Both major ginsenosides may influence dynamics of mitochondria turnover and alter muscle metabolism.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded158    
    Comments [Add]    
    Cited by others 1    

Recommend this journal