• Users Online: 459
  • Print this page
  • Email this page
Export selected to
Endnote
Reference Manager
Procite
Medlars Format
RefWorks Format
BibTex Format
  Most popular articles (Since November 28, 2018)

 
 
  Archives   Most popular articles   Most cited articles
 
Hide all abstracts  Show selected abstracts  Export selected to
  Viewed PDF Cited
REVIEW ARTICLE
Fibroblast growth factors: Potential novel targets for regenerative therapy of osteoarthritis
Tsung-Ming Chen, Ya-Huey Chen, H Sunny Sun, Shaw-Jenq Tsai
January-February 2019, 62(1):2-10
DOI:10.4103/CJP.CJP_11_19  PMID:30942193
Osteoarthritis (OA) is a degenerative joint disorder and is the leading cause of disability of people, which negatively impact people's physical and mental health. Although OA causes great socioeconomic burden and individual suffering, no effective treatment options are provided so far. This is partially resulted from poor regenerative activity of articular cartilage and our incomplete understanding of the underlying mechanism of OA. Traditional drug therapies such as acetaminophen and opioids are effective in relieving pain but do not reverse cartilage damage and are often associated with adverse events. Therefore, it is necessary to find effective OA drugs. In recent years, novel regenerative therapies have received much attention because they can effectively promote tissue repair and regeneration. The fibroblast growth factor (FGF) signaling has been suggested to involve in cartilage homeostasis for decades. The current research shows that sprifermin/recombinant FGF18 significantly reduces the loss of cartilage thickness and volume without serious side effects, thus warrants a continued research for potential new medications of OA. This review mainly highlights the current research progress on FGFs and FGF receptors as a potential therapeutic target for OA.
  4,872 683 9
REVIEW ARTICLES
Neuropeptide FF modulates neuroendocrine and energy homeostasis through hypothalamic signaling
Ya-Tin Lin, Jin-Chung Chen
March-April 2019, 62(2):47-52
DOI:10.4103/CJP.CJP_23_19  PMID:31243174
Neuropeptide FF (NPFF) is known as a morphine-modulating peptide and was first isolated in 1985. It has been characterized as an RF-amide peptide. The traditional role of NPFF is mediation of the pain response, and it displays both anti-opioid and pro-opioid actions through central nervous system. In the recent decade, additional evidence has revealed some untraditional features of NPFF, such as regulation of the neuroendocrine system, energy homeostasis, anti-inflammation, pain transmission, and peripheral modulation of adipose tissue macrophages. Neuropeptide FF receptor 2 (NPFFR2) is a physiological receptor of NPFF, and the actions of NPFF may occur through downstream NPFFR2 signaling. NPFF and NPFFR2 increase the neuronal activity in various areas of the hypothalamus to modulate the hypothalamic–pituitary–adrenal axis, the autonomic nervous system, food intake, and energy balance. These underlying cellular mechanisms have been explored in the past few years. Here, we review the impact of NPFF and related RF-amide peptides on hypothalamic function. The interaction of NPFF with NPFFR2 in the hypothalamus is emphasized, and NPFF-NPFFR2 system may represent an important therapeutic target in hypothalamic-related disorders in the future.
  2,741 362 3
REVIEW ARTICLE
Histone deacetylases in stroke
Mei-Han Kao, Teng-Nan Lin
May-June 2019, 62(3):95-107
DOI:10.4103/CJP.CJP_22_19  PMID:31249263
Stroke is the second leading cause of death and the leading cause of adult disability worldwide. Despite an impressive amount of neuroprotective agents that has been identified in experimental stroke, none of them proved efficient in clinical trials. There is a general consensus that an effective treatment requires the ability to interact with not one, but multiple pathophysiological cascades at different levels that induced by the insult – cocktail therapy. Luckily, recent progress in the field of epigenetics revealed that epigenetic modifications had influence on many known pathways involved in the complex course of ischemic disease development. The fact that epigenetic molecules, by altering transcriptional regulation, may simultaneously act on different levels of ischemic brain injury makes them promising candidates for clinical use. These modifications arise typically owing to deoxyribonucleic acid methylation and histone acetylation. The aim of this review is to give a comprehensive overview of current advances in stroke epigenetics, in particular, the physiological and pathological functions of the 11 classical histone deacetylases.
  2,670 396 3
ORIGINAL ARTICLES
Blood dopamine level enhanced by caffeine in men after treadmill running
Jeong-Beom Lee, Hye-Jin Lee, Seung-Jea Lee, Tae-Wook Kim
November-December 2019, 62(6):279-284
DOI:10.4103/CJP.CJP_59_19  PMID:31793465
The aim of this study was to investigate the plasma dopamine and serum serotonin levels in humans with and without caffeine (CAFF) ingestion during treadmill running exercise. Thirty male volunteers participated in the randomized experiment involving two groups: CON (n = 15, 200 mL of tap water) versus CAFF (n = 15, 3 mg/kg CAFF and 200 mL tap water). After treadmill running, the dopamine level was significantly increased in the CAFF group (P < 0.01) and was significantly higher than in the CON group (P < 0.01). Serotonin was significantly increased in both groups after treadmill running (P < 0.05). However, serotonin levels showed no significant statistical difference between the groups. Prolactin and cortisol were significantly increased in both groups after treadmill running (P < 0.01). However, there was no significant statistical difference between groups. β-endorphin level was significantly increased in the CAFF group at after treadmill running (P < 0.01) and was significantly higher than in CON after treadmill running (P < 0.01). In conclusion, 3 mg/kg CAFF ingestion before treadmill running stimulated dopamine release without inhibiting serotonin, which may reduce central fatigue.
  2,702 328 -
Possible nitric oxide mechanism involved in the protective effect of L-theanine on haloperidol-induced orofacial dyskinesia
Cheng-Chia Tsai, Mao-Hsien Wang, Kuo-Chi Chang, Hung-Sheng Soung, Chih-Chuan Yang, Hsiang-Chien Tseng
January-February 2019, 62(1):17-26
DOI:10.4103/CJP.CJP_8_19  PMID:30942195
Having powerful antioxidative properties, L-theanine (LT), one of the major amino acid components in green tea, has potent anti-oxidative and neuroprotective effects. In this study, we examined the potential protective effects of LT on haloperidol (HAL)-induced orofacial dyskinesia (OD) in rats. HAL treatment (1 mg/kg intraperitoneally for 21 days) induced OD; significant increases (P < 0.001) in the frequency of vacuous chewing movement and tongue protrusion as well as the duration of facial twitching. LT treatment (100 mg/kg orally for 35 days, starting 14 days before HAL injection) was able to prevent most of the HAL-induced OD. LT treatment was also able to reduce the lipid peroxidation production and nitric oxide (NO) level, and enhance the antioxidation power in striatum from rats with HAL treatment. In order to examine the implication of NO pathway activity in HAL treatment, either NO precursor (L-arginine) or NO synthase inhibitor (L-NAME) was co-pretreated with LT; NO precursor treatment eliminated the protective effect of LT, in contrast to that NO synthase inhibitor treatment significantly potentiated the LT effects on behavioral and biochemical protection in HAL-treated rats. These results suggested that the NO pathway was implicated, at least in part, in the HAL-induced OD, as well as in the protective effect of LT in treating HAL-induced OD. The above evidence provides a clinically relevant value for LT in delaying or treating tardive dyskinesia.
  2,692 261 -
Effect of taurine on ethanol-induced oxidative stress in mouse liver and kidney
Zofia Goc, Edyta Kapusta, Grzegorz Formicki, Monika Martiniaková, Radoslav Omelka
July-August 2019, 62(4):148-156
DOI:10.4103/CJP.CJP_28_19  PMID:31535630
The purpose of this study was to investigate the effect of alcohol exposure on liver and kidney antioxidant systems in taurine exhibition during different time periods. Mice were divided into groups: I – control; II – alcohol (2.5 g/kg b.w.); III – taurine (42.84 mg/kg b.w.); and IV – alcohol + taurine. Treatments were provided for 24 h, 14 days, and 56 days. In the liver and kidney of the alcohol group, antioxidant enzyme (superoxide dismutase, catalase, and glutathione peroxidase) activities, reduced glutathione (GSH), and malondialdehyde (MDA) levels were decreased, as compared to the control group in all time periods. Taurine was found to be effectively inhibiting oxidative action of alcohol and increasing all the tested parameters in the liver (after 24 h) and kidney (after 24 h and 14 days). Moreover, the positive effect of taurine administration on GSH and MDA levels persisted in the kidneys of mice exposed to alcohol for 56 days. In conclusion, alcohol administration led to a significant influence on antioxidant system in the liver and kidney, but simultaneous intake of taurine, along with ethanol, partly attenuated the antioxidant changes in these organs.
  2,549 344 3
Different susceptibilities of osteoclasts and osteoblasts to glucocorticoid-induced oxidative stress and mitochondrial alterations
Yu-Hsu Chen, Shao-Yu Peng, Ming-Te Cheng, Yu-Pao Hsu, Zong-Xi Huang, Winston Teng-Kuei Cheng, Shinn-Chih Wu
March-April 2019, 62(2):70-79
DOI:10.4103/CJP.CJP_7_19  PMID:31243177
Glucocorticoid-induced bone loss is the most common form of secondary osteoporosis. This toxic effect has not been efficiently managed, possibly due to the incomplete understanding of the extraordinarily diverse cellular responses induced by glucocorticoid treatment. Previous literatures revealed that high dose of exogenous glucocorticoid triggers apoptosis in osteocytes and osteoblasts. This cell death is associated with glucocorticoid-induced oxidative stress. In this study, we aimed to investigate the mechanisms of glucocorticoid-induced apoptosis in osteoblasts and examine the responses of osteoclasts to the synthetic glucocorticoid, dexamethasone. We demonstrated the biphasic effects of exogenous glucocorticoid on osteoblastic mitochondrial functions and elevated intracellular oxidative stress in a dose- and time-dependent manner. On comparison, similar treatment did not induce mitochondrial dysfunctions and oxidative stress in osteoclasts. The production of reactive oxygen/nitrogen species was decreased in osteoclasts. The differences are not due to varying efficiency of cellular antioxidant system. The opposite effects on nitrogen oxide synthase might provide an explanation, as the expression levels of nos2 gene are suppressed in the osteoclast but elevated in the osteoblast. We further revealed that glucocorticoids have a substantial impact on the osteoblastic mitochondria. Basal respiration rate and ATP production were increased upon 24 h incubation of glucocorticoids. The increase in proton leak and nonmitochondrial respiration suggests a potential source of glucocorticoid-induced oxidative stress. Long-term incubation of glucocorticoids accumulates these detrimental changes and results in cytochrome C release and mitochondrial breakdown, consequently leading to apoptosis in osteoblasts. The mitochondrial alterations might be other sources of glucocorticoid-induced oxidative stress in osteoblasts.
  2,437 375 3
REVIEW ARTICLES
Autophagy: A potential target for rescuing sepsis-induced hepatic failure
Chin Hsu
March-April 2019, 62(2):53-62
DOI:10.4103/CJP.CJP_25_19  PMID:31243175
Sepsis is the leading cause of death in intensive care units worldwide; however, it remains a scientific and clinical challenge in modern medicine. An excessive inflammatory response associated with high level of reactive oxygen species results in mitochondrial dysfunction and activation of the unfolded protein response leading to subsequent energetic organ failure in septic patients. In addition to blocking the inflammatory cascade directly, new strategies focusing on host endogenous adaption to severe infection may hold better promise for improving outcomes in septic patients. Autophagy is a fundamental cellular response to stress and pathogen invasion. The study of autophagic responses to sepsis is a critical component of understanding the mechanisms by which tissues respond to infection. This review aims at elucidating the role of autophagy in sepsis-induced hepatic failure and further explores the possible factor that suppresses autophagy and potential targets of augmenting autophagy, in an effort to provide a new perspective for the clinical treatment of sepsis-induced hepatic failure.
  2,451 286 1
ORIGINAL ARTICLES
Combination of exercise training and resveratrol attenuates obese sarcopenia in skeletal muscle atrophy
Chyi-Huey Bai, Javad Alizargar, Ching-Yi Peng, Jia-Ping Wu
May-June 2020, 63(3):101-112
DOI:10.4103/CJP.CJP_95_19  PMID:32594063
Obese sarcopenia is a progressive loss of skeletal muscle mass and strength with increases in adipocytes. The aim of this study was to investigate the effects of combination of exercise training and resveratrol on the pathological pathway from obesity to sarcopenia, and potential therapy for skeletal muscle declines in physical function. Two animal models were experimented: (1) C57BL/6J male mice were fed either a high-fat diet (HFD) for 8 weeks to induce obesity and resveratrol (low-, middle-, and high-dose) for 4 weeks. (2) senescence-accelerated mouse prone 8 (SAMP8) mice with sarcopenia were used. Skeletal muscle function of SAMP8 mice expressed an age-associated decline. In SAMP8 mice, resveratrol (150 mg/Kg BW, daily) was administered by oral gavage two times a week for 1 month of the experimental period. Exercise training based on adaptations in the muscle is training twice a week for 4 weeks. SAMP8 mouse skeletal muscle in each group was analyzed by H and E staining, transferase dUTP nick end labeling, and Western blot analysis. Mitochondrial function expression, apoptosis and relative hypertrophy signaling in HFD-induced obesity mice and SAMP8 mice were determined by Western blot analysis. Results of the present study indicate that effect of resveratrol on skeletal muscles of HFD-induced obesity mice is linked to an increase in Bcl-2 and phosphatidylinositol 3 kinase/AKT expressions. On the other hand, resveratrol, and its combination with exercise training, attenuate the aging-related mitochondrial dysfunction involving Bad, caspase 3, and interleukin-6 expressions in SAMP8 mice. Combination of exercise training and resveratrol induced hypertrophy in skeletal muscles of sarcopenia SAMP8 mice. Therefore, we suggest combination of exercise training and resveratrol as a therapeutic potential in obese sarcopenia.
  2,348 329 -
Magnesium sulfate attenuates lipopolysaccharides-induced acute lung injury in mice
Wu Li, Xiaoling Wu, Jialin Yu, Chenjie Ma, Peipei Zhuang, Jin Zeng, Jiamei Zhang, Guangcun Deng, Yujiong Wang
September-October 2019, 62(5):203-209
DOI:10.4103/CJP.CJP_48_19  PMID:31670284
Acute lung injury (ALI) is a common and severe respiratory disease with high morbidity and mortality. Although some progress has been made in the past years, the pathogenesis of ALI is still poorly understood and the therapeutic outcome has still not been significantly improved. It is well-recognized that magnesium sulfate (MgSO4) possesses potent anti-inflammation capacity. The present study was designed to investigate the protective effects of MgSO4 in lipopolysaccharides (LPSs)-induced ALI taken into account that excessive inflammatory response plays critical role in the development of ALI. In this study, Kunming mice were intravenously injected with LPS through tail vein to establish the ALI model and in parallel, A549 cells were used to establish cell model. The lung wet-to-dry weight ratio, malondialdehyde (MDA) levels in lung tissue, lung permeability index, hematoxylin and eosin staining, cytokines in the serum and bronchoalveolar lavage fluid (BALF), neutrophil counts in BALF, LPS-induced A549 cell apoptosis as well as apoptosis-inducing factor (AIF), and Poly(ADP-ribose) polymerase-1 (PARP-1) expression in both mice and A549 cells were detected. Our results demonstrated that MgSO4 significantly attenuated the LPS-induced ALI, oxidative stress (decreased MDA levels), and lung inflammatory response. Moreover, MgSO4 exerted protective effects by mitigating LPS-induced A549 cell apoptosis. Furthermore, MgSO4 decreased the AIF and PARP-1 expression both in vivo and in vitro. Our results, taken together, demonstrated that MgSO4 is a potential therapeutic agent for ALI taken into consideration that MgSO4 is commonly used in clinical settings.
  2,332 226 4
Glycine tomentella hayata extract and its ingredient daidzin ameliorate cyclophosphamide-induced hemorrhagic cystitis and oxidative stress through the action of antioxidation, anti-fibrosis, and anti-inflammation
Kung-Chieh Wu, Wei-Yu Lin, Yi-Ting Sung, Wei-Yi Wu, Yu-Hsiuan Cheng, Tung-Sheng Chen, Bing-Juin Chiang, Chiang-Ting Chien
September-October 2019, 62(5):188-195
DOI:10.4103/CJP.CJP_60_19  PMID:31670282
We explored the therapeutic potential of intragastric administration of traditional Chinese medicine Glycine tomentella Hayata (I-Tiao-Gung [ITG]) extract and its major component Daidzin on cyclophosphamide (CYP)-induced cystitis, oxidative stress, fibrosis, inflammation, and bladder hyperactivity in rats. Female Wistar rats were divided into control, CYP (200 mg/kg), CYP+ITG (1.17 g/kg/day), and CYP+Daidzin (12.5 mg/kg/day) groups. We measured the voiding function by the transcystometrogram and evaluated the pathology with the hematoxylin and eosin and Masson stain. We determined the bladder reactive oxygen species (ROS) amount by an ultrasensitive chemiluminescence analyzer, the expression of 3-nitrotyrosine (3-NT) and NADPH oxidase 4 (NOX4) by Western blot and the expression of multiple cytokine profiles, including matrix metalloproteinase (MMP)-8 and tissue inhibitor of metalloproteinase (TIMP)-1 through a cytokine array. ITG extract contains 1.07% of Daidzin through high-performance liquid chromatography. The effect of ITG extract and Daidzin in scavenging hydrogen peroxide activity was more efficient than distilled water. CYP-induced higher urination frequency, shorter intercontraction interval, and lower maximal voiding pressure in the bladders and these symptoms were significantly ameliorated in CYP+ITG and CYP+Daidzin groups. The amount of in vivo bladder ROS and the expression of 3-NT and NOX4 expressions were significantly increased in CYP group but were efficiently decreased in the CYP+ITG and CYP+Daidzin groups. CYP-induced fibrosis, hemorrhage, leukocyte infiltration, and edema in the bladders were significantly attenuated in the CYP+ITG and CYP+Daidzin groups. These results suggested that ITG extract and its active component Daidzin effectively improved CYP-induced oxidative stress, inflammation, and fibrosis through inhibiting the MMP-8, TIMP-1, and oxidative stress.
  2,303 227 1
Effects of cannabinoid modulation on hypothalamic nesfatin-1 and insulin resistance
Oktay Kaya, Makbule Elif Yilmaz, Sinasi Bayram, Ozgur Gunduz, Gulnur Kizilay, Levent Ozturk
September-October 2019, 62(5):182-187
DOI:10.4103/CJP.CJP_50_19  PMID:31670281
Both nesfatin-1 and cannabinoid systems involved in the regulation of sleep, metabolism, and food intake. The relationship between cannabinoid system and nesfatin-1 levels remains to be elucidated. This study investigated nesfatin-1 and insulin resistance in 72-h rapid eye movement (REM) sleep-deprived mice under the effects of cannabinoid, and cannabinoid receptors CB1R and CB2R blocking. Sixty mice were exposed to 72-h sleep deprivation. Groups and drug administrations were as follows: Group 1 (control) received injection of vehicle. Group 2 received WIN 55,212,2. Group 3 received AM251 (CB1R antagonist) followed by WIN 55,212,2 injection. Group 4 received SR144528 (CB2R antagonist) followed by WIN 55,212,2 injection. Group 5 received only AM251. Group 6 received only SR144528. Blood samples were collected 1 h after drug administration and prepared for biochemical measurements. Glucose levels were measured by glucometer, whereas insulin and nesfatin-1 levels were measured by ELISA. Central nesfatin-1 was also assessed using immunohistochemistry. One-way analysis of variance together with post hoc Tukey's test was used for inter-group comparisons. Serum nesfatin-1 levels were comparable in all study groups. Brain nesfatin-1 immune-positive cell count was lower in WIN group compared to controls. The administration of CB1R or CB2R antagonist prevented reduction in nesfatin-1-positive cell count. Insulin resistance was higher in WINCB2 and CB2 groups than in control and WINCB1 groups. Cannabinoid treatment reduced nesfatin-1 immunoreactivity in the central nervous system and this effect was prevented by either CB1R or CB2R antagonist pretreatment. Insulin resistance might be related to CB2 receptor activation which was independent from central nesfatin-1 immunoreactivity.
  2,259 241 -
Atrial electrical remodeling induced by chronic ischemia and inflammation in patients with stable coronary artery disease
Răzvan Constantin Serban, Alkora Ioana Balan, Marcel Perian, Irina Pintilie, Cristina Somkereki, Adina Huţanu, Alina Scridon
January-February 2019, 62(1):11-16
DOI:10.4103/CJP.CJP_2_19  PMID:30942194
The pathophysiology of coronary artery disease (CAD) includes low-grade chronic inflammation. At its turn, inflammation is known to promote myocardial structural remodeling and to increase vulnerability to atrial arrhythmias. Meanwhile, the impact of chronic inflammation on the electrophysiological properties of the atria remains unknown. We aimed to evaluate the impact of low-grade chronic inflammation on atrial electrophysiology in patients with stable CAD undergoing elective coronary artery bypass grafting (CABG). Circulating levels of several inflammatory, angiogenesis, and endothelial dysfunction markers were determined 1 day before CABG in 30 consecutive CAD patients. Right atrial appendage samples were collected during the CABG procedure; action potential recordings were performed in six study patients using the microelectrode technique. Interleukin (IL)-1b (r = 1.00, P = 0.01), IL-6 (r = 0.98, P < 0.01), vascular endothelial growth factor (VEGF) (r = 0.98, P < 0.01), and hemoglobin (r = 0.98, P < 0.01) levels significantly positively correlated with the duration of atrial depolarization. Consequently, IL-6, VEGF, and hemoglobin (r = −0.86, P = 0.03 for all) levels significantly negatively correlated with the velocity of atrial depolarization. There was no significant correlation between any of the studied markers levels and any of the other parameters of the action potential (all P > 0.05). The present study is the first to demonstrate that in patients with stable CAD, chronic inflammation and ischemia are associated with pro-arrhythmic atrial electrical remodeling. These changes may contribute to the increased propensity to postoperative atrial arrhythmias seen in some of the patients undergoing CABG.
  2,188 306 2
Action of citral on the substantia gelatinosa neurons of the trigeminal subnucleus caudalis in juvenile mice
Thao Thi Phuong Nguyen, Seon Hui Jang, Soo Joung Park, Dong Hyu Cho, Seong Kyu Han
September-October 2019, 62(5):175-181
DOI:10.4103/CJP.CJP_32_19  PMID:31670280
The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is admitted as a pivotal site of integrating and regulating orofacial nociceptive inputs. Although citral (3,7-dimethyl-2,6-octadienal) is involved in antinociception, the action mechanism of citral on the SG neurons of the Vc has not been fully clarified yet. In this study, we examined the direct membrane effects of citral and how citral mediates responses on the SG neurons of the Vc in juvenile mice using a whole-cell patch-clamp technique. Under high chloride pipette solution, citral showed repeatable inward currents that persisted in the presence of tetrodotoxin, a voltage-gated Na+ channel blocker, and 6-cyano-7-nitro-quinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) glutamate receptor antagonist, D-2-amino-5-phosphonopentanoic acid, an NMDA receptor antagonist. However, the citral-induced inward currents were partially blocked by picrotoxin, a gamma-aminobutyric acid (GABAA)-receptor antagonist, or by strychnine, a glycine receptor antagonist. Further, the citral-induced responses were almost blocked by picrotoxin with strychnine. We also found that citral exhibited additive effect with GABA-induced inward currents and glycine-induced inward currents were potentiated by citral. In addition, citral suppressed the firing activities by positive current injection on the SG neurons of the Vc. Taken together, these results demonstrate that citral has glycine- and/or GABA-mimetic actions and suggest that citral might be a potential target for orofacial pain modulation by the activation of inhibitory neurotransmission in the SG area of the Vc.
  2,227 210 1
Altered expression of vascular endothelial growth factor, vascular endothelial growth factor receptor-1, vascular endothelial growth factor receptor-2, and Soluble Fms-like Tyrosine Kinase-1 in peripheral blood mononuclear cells from normal and preeclamptic pregnancies
Zaima Ali, Saba Khaliq, Saima Zaki, Hafiz Usman Ahmad, Khalid Pervaiz Lone
May-June 2019, 62(3):117-122
DOI:10.4103/CJP.CJP_15_19  PMID:31249265
Preeclampsia (PE) is the leading cause of maternal and fetal morbidity and mortality. It complicates around 2%–10% pregnancies worldwide due to imbalance between proangiogenic and anti-angiogenic factors, leading to incomplete placentation, ischemia, and endothelial dysfunction. The study was aimed to analyze the mRNA expression of vascular endothelial growth factor (VEGF) and its receptors, i.e., VEGF receptor-1 (VEGFR-1), VEGF receptor-2 (VEGFR-2), and soluble Fms-like tyrosine kinase-1 (sFlt-1) from maternal peripheral blood mononuclear cells (PBMCs) of PE patients. This was a cross-sectional comparative study comprising 18 normotensive and 18 PE patients; the patients were further divided as early-onset preeclampsia (EOP) and late-onset preeclampsia (LOP). The expression level of VEGF, its receptors (VEGFR-1 and VEGFR-2), and sFlt-1 was investigated using real-time polymerase chain reaction. There was a significant change in the mRNA expression with a decrease in VEGF, VEGFR-1, and VEGFR-2 and an increase in sFlt-1 in PBMCs of PE and normal pregnancies (P < 0.001). sFlt-1 mRNA expression was increased by 2.95-fold in the PE group with an inverse correlation with expression of VEGFR-2 (Spearman's rho = 0.68). Based on these findings, we conclude that PE is associated with decrease in the mRNA expression of VEGF, VEGFR-1, and VEGFR-2 as compared to an increase in sFlt-1 in PBMCs.
  2,137 297 2
REVIEW ARTICLE
Mechanistic insight of cyclin-dependent kinase 5 in modulating lung cancer growth
G. M. Shazzad Hossain Prince, Tsung-Ying Yang, Ho Lin, Mei-Chih Chen
November-December 2019, 62(6):231-240
DOI:10.4103/CJP.CJP_67_19  PMID:31793458
Lung harbors the growth of primary and secondary tumors. Even though numerous factors regulate the complex signal transduction and cytoskeletal remodeling toward the progression of lung cancer, cyclin-dependent kinase 5 (Cdk5), a previously known kinase in the central nervous system, has raised much attention in the recent years. Patients with aberrant Cdk5 expression also lead to poor survival. Cdk5 has already been employed in various cellular processes which shape the fate of cancer. In lung cancer, Cdk5 mainly regulates tumor suppressor genes, carcinogenesis, cytoskeletal remodeling, and immune checkpoints. Inhibiting Cdk5 by using drugs, siRNA or CRISP-Cas9 system has rendered crucial therapeutic advantage in the combat against lung cancer. Thus, the relation of Cdk5 to lung cancer needs to be addressed in detail. In this review, we will discuss various cellular events modulated by Cdk5 and we will go further into their underlying mechanism in lung cancer.
  2,076 280 1
ORIGINAL ARTICLES
Adrenergic receptor beta-3 rs4994 (T>C) and liver X receptor alpha rs12221497 (G>A) polymorphism in Pakistanis with metabolic syndrome
Uzma Zafar, Saba Khaliq, Zaima Ali, Khalid Pervaiz Lone
September-October 2019, 62(5):196-202
DOI:10.4103/CJP.CJP_45_19  PMID:31670283
The present study aimed to determine the association of adrenergic receptor beta-3 (ADRB3) rs4994 T>C and liver X receptor alpha (LXR-α) rs12221497 G>A polymorphism with metabolic syndrome (Met S) and the related traits in Pakistanis. Patients of Met S were recruited from the Endocrinology and Diabetic Clinic of Sheikh Zayed Hospital Lahore, over the time span of 6 months from July to December 2016. Single-nucleotide polymorphism (SNP) of ADRB3 was determined by restriction fragment length polymorphism and of LXR-α by amplification refractory mutation system polymerase chain reaction. The frequency of TT variant of ADRB3 T>C in Met S was 69 (34.5%) and in controls 89 (44.5%), frequency of TC 103 (51.5%) and 96 (48%), and of CC 28 (14%) and 15 (7.5%), respectively. In the recessive model (CC: TT + TC), CC genotype was found to be associated with the increased risk of Met S (P = 0.027; odds ratio [OR] = 2.09; confidence interval [CI] =1.08–4.03) and the association remained significant after controlling for the confounders such as age and sex. The frequency of GG variant of LXR-α G>A in Met S was 35 (17.5%) and in controls 15 (7.5%), GA 129 (64.5%) and 137 (68.5%), and AA 36 (18%) and 48 (24%), respectively. In the recessive model (GG: GA + AA), GG genotype was found to be associated with the increased risk of Met S (P = 0.004; OR = 2.52; CI = 1.33–4.80) and the association remained significant after controlling for the confounders such as age and sex. It was concluded that SNP of ADRB3 (190 T>C) and LXR-α (−115 G>A) were associated with the risk of Met S and might increase the susceptibility to the obesity-related traits.
  2,193 159 1
Acute and chronic effects of aerobic exercise on serum irisin, adropin, and cholesterol levels in the winter season: Indoor training versus outdoor training
Serhat Ozbay, Süleyman Ulupınar, Engin Şebin, Konca Altınkaynak
January-February 2020, 63(1):21-26
DOI:10.4103/CJP.CJP_84_19  PMID:32056983
The aim of this study is to investigate the acute and chronic effects of aerobic training performed indoors and outdoors on irisin, adropin, and cholesterol levels in winter. Thirty-two healthy males participated in this study. Participants were divided into two groups: outdoor group (n = 16) and indoor group (n = 16). They then performed 40-min aerobic running exercises 4 days/week for 18 weeks. The outdoor group trained at −5°C–5°C environmental temperature, while the indoor group trained at 21°C–25°C. Blood samples were collected before and after the 18-week training period and immediately after the first training. The results showed that single aerobic exercise induced minimal increase in serum irisin concentrations in both groups. In addition, irisin levels did not change in the outdoor group but significantly decreased in the indoor group after the 18-week training period. Aerobic exercise had no acute or chronic effects on serum adropin levels in the indoor group. However, the aerobic training caused a decrease in adropin levels chronically, but there was no acute effect after single aerobic exercise in the outdoor group. Furthermore, there was no acute effect on high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, and total cholesterol after single aerobic exercise in both groups. However, after the 18-week training period, there was a significant increase in HDL-C levels in both groups. Moreover, the increase in HDL-C in the outdoor group was higher than in the indoor group. Thus, this study provides evidence for the beneficial chronic effects of aerobic exercise and cold on HDL-C levels as well as the beneficial acute effects on irisin concentrations.
  1,968 370 3
Sex differences and the modulating effects of gonad intactness on behavioral conformity in a mouse model
Chianfang G Cherng, Lung Yu
November-December 2019, 62(6):245-255
DOI:10.4103/CJP.CJP_42_19  PMID:31793460
Although gender differences in conformity are noticed in human studies, cultural norms and psychosocial factors inevitably affect such differences. Biological factors, especially the gonadal hormones and the brain regions involved, contributing to the sex differences in behavioral conformity remained scarcely explored. To prevent psychosocial and cultural norm confounds, intact and gonadectomized male and female mice were used to assess the modulating effects of gonadal hormones on behavioral conformity and such conformity-related brain regions using an approach of choice paradigm. Intact and gonadectomized mice' choices for the nonrewarded runway were assessed when these experimental mice were alone versus with a group, consisting of three same-sex noncagemates choosing the respective experimental mice' nonrewarded runway, in a double-J-shaped maze test. Although male and female mice exhibited comparable rewarded runway choices at the conclusion of the operant training procedures and in the test individually, male mice demonstrated greater conformity index as compared to female mice when group tested. Gonadectomy, done at their 4 or 9 weeks of age, decreased males' conformity index but did not affect females' when both sexes were group tested. Such gonadectomy did not affect the conditioning or conformity index when tested individually in either sex. Female mice had higher serum corticosterone (CORT) levels when group tested as compared to the female mice tested individually and male mice. Finally, the number of FOS-staining cells in high conformity-displaying mice was found less than it in the low conformity-performing mice in the nucleus accumbens. Taken together, we conclude that testis-derived hormones, at least, play a role in enhancing behavioral conformity in male mice. CORT and nucleus accumbal neuronal activity deserve further investigation for their involvement in behavioral conformity.
  2,109 148 -
Additive and nonadditive effects of salmon calcitonin and omega-3 fatty acids on antioxidant, hematological and bone and cartilage markers in experimental diabetic-osteoarthritic rats
Wale J Adeyemi, Luqman A Olayaki
May-June 2019, 62(3):108-116
DOI:10.4103/CJP.CJP_8_18  PMID:31249264
Reports on the coexistence of diabetes mellitus and osteoarthritis in human subjects dated back to the 1960s. However, there is no account in literature on the co-manifestation of these disease conditions in experimental animals. In our previous study, we reported for the first time, the effects of pharmacological agents on glucoregulatory indices, lipid profile, and inflammatory markers in experimental diabetic-knee osteoarthritic rat. However, in the present study, the effects of salmon calcitonin (Sct), and/or omega-3 fatty acids (N-3) were further investigated on other biomarkers. Forty-nine rats of seven animals per group were used for this study. Diabetes was induced by the administration of streptozotocin (65 mg/kg) and nicotinamide (110 mg/kg). Thereafter, knee osteoarthritis was induced by the intra-articular injection of 4 mg of sodium monoiodoacetate in 40 μl of saline. Nine days after the inductions, treatments started, and they lasted for 4 weeks. N-3 was administered at 200 mg/kg/day, while Sct was administered at 2.5 and 5.0 IU/kg/day. The results of the study indicated that the induced diabetes-knee osteoarthritis caused significant alterations in all the observed biomarkers. Sct showed a dose-specific effect and an additive action with N-3 in reducing malondialdehyde and lactate dehydrogenase, and in elevating total bilirubin and total antioxidant capacity. However, it largely demonstrated a nondose-specific effect and nonadditive action with N-3 on superoxide dismutase, catalase, glutathione peroxidase, total alkaline phosphatase, c-telopeptide of type-I collagen, collagen type-2 alpha 1, and hematological indices. In conclusion, the combined administration of Sct and N-3 proffer better therapeutic effects than the single therapy; therefore, they could be used in the management of diabetic-osteoarthritic condition.
  1,940 279 7
Action of chlorzoxazone on Ca2+movement and viability in human oral cancer cells
Ti Lu, Wei-Zhe Liang, Lyh-Jyh Hao, Chun-Chi Kuo, Pochuen Shieh, Chiang-Ting Chou, Chung-Ren Jan
May-June 2019, 62(3):123-130
DOI:10.4103/CJP.CJP_20_19  PMID:31249266
Chlorzoxazone is a skeletal muscle relaxant. However, the effect of chlorzoxazone on intracellular Ca2+ concentrations ([Ca2+]i) in oral cancer cells is unclear. This study examined whether chlorzoxazone altered Ca2+ signaling and cell viability in OC2 human oral cancer cells. [Ca2+]iin suspended cells was measured using the fluorescent Ca2+-sensitive dye fura-2. Cell viability was examined by water-soluble tetrazolium-1 assay. Chlorzoxazone (250–1000 μM) induced [Ca2+]irises in a concentration-dependent manner. Ca2+ removal reduced the signal by approximately 50%. Mn2+ has been shown to enter cells through similar mechanisms as Ca2+ but quenches fura-2 fluorescence at all excitation wavelengths. Chlorzoxazone (1000 μM) induced Mn2+ influx, suggesting that Ca2+ entry occurred. Chlorzoxazone-induced Ca2+ entry was inhibited by 20% by inhibitors of store-operated Ca2+ channels and protein kinase C (PKC) modulators. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) inhibited chlorzoxazone-evoked [Ca2+]irises by 88%. Conversely, treatment with chlorzoxazone-suppressed TG-evoked [Ca2+]irises 75%. Chlorzoxazone induced [Ca2+]irises by exclusively releasing Ca2+ from the endoplasmic reticulum. Inhibition of phospholipase C (PLC) with U73122 did not alter chlorzoxazone-induced [Ca2+]irises. PLC activity was not involved in chlorzoxazone-evoked [Ca2+]irises. Chlorzoxazone at 200–700 μM decreased cell viability, which was not reversed by pretreatment with Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxy methyl. In sum, in OC2 cells, chlorzoxazone induced [Ca2+]irises by evoking PLC-independent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Chlorzoxazone also caused Ca2+-independent cell death. Since [Ca2+]irises play a triggering or modulatory role in numerous cellular phenomena, the effect of chlorzoxazone on [Ca2+]iand cell viability should be taken into account in other in vitro studies.
  1,946 260 1
Aloperine suppresses human pulmonary vascular smooth muscle cell proliferation via inhibiting inflammatory response
Zhi Chang, Peng Zhang, Min Zhang, Feng Jun, Zhiqiang Hu, Jiamei Yang, Yuhua Wu, Ru Zhou
July-August 2019, 62(4):157-165
DOI:10.4103/CJP.CJP_27_19  PMID:31535631
Abnormal pulmonary arterial vascular smooth muscle cells (PASMCs) proliferation is critical pathological feature of pulmonary vascular remodeling that acts as driving force in the initiation and development of pulmonary arterial hypertension (PAH), ultimately leading to pulmonary hypertension. Aloperine is a main active alkaloid extracted from the traditional Chinese herbal Sophora alopecuroides and possesses outstanding antioxidation and anti-inflammatory effects. Our group found Aloperine has protective effects on monocroline-induced pulmonary hypertension in rats by inhibiting oxidative stress in previous researches. However, the anti-inflammation effects of Aloperine on PAH remain unclear. Therefore, to further explore whether the beneficial role of Aloperine on PAH was connected with its anti-inflammatory effects, we performed experiments in vitro. Aloperine significantly inhibited the proliferation and DNA synthesis of human pulmonary artery smooth muscle cells (HPASMCs) induced by platelet-derived growth factor-BB, blocked progression through G0/G1to S phase of the cell cycle and promoted total ratio of apoptosis. In summary, these results suggested that Aloperine negatively regulated nuclear factor-κB signaling pathway activity to exert protective effects on PAH and suppressed HPASMCs proliferation therefore has a potential value in the treatment of pulmonary hypertension by negatively modulating pulmonary vascular remodeling.
  1,913 244 4
REVIEW ARTICLE
Physiological and pathological functions of beta-amyloid in the brain and alzheimer's disease: A review
Ladislav Volicer
May-June 2020, 63(3):95-100
DOI:10.4103/CJP.CJP_10_20  PMID:32594062
Alzheimer's disease is a major health problem all over the world. The role of beta-amyloid (Aβ) is at the center of investigations trying to discover the disease pathogenesis and to develop drugs for treatment or prevention on Alzheimer's disease. This review summarizes both physiological and pathological functions of Aβ and factors that may participate in the disease development. Known genetic factors are trisomy of chromosome 21, mutations of presenilin 1 and 2, and apolipoprotein E4. Lifetime stresses that increase the risk of development of Alzheimer's disease are described. Another important factor is the level of education, especially of linguistic ability. Lifestyle factors include mental and physical exercise, head injury, social contacts, and diet. All these factors might potentiate the effect of aging on the brain to increase the risk of development of pathological changes. The review summarizes pathological features of Alzheimer brain, Aβ plaques, neurofibrillary tangles composed of hyperphosphorylated tau, and brain atrophy. Consequences of Alzheimer's disease that are reviewed include cognitive deficit, loss of function, and neuropsychiatric symptoms. Because there is no effective treatment, many persons with Alzheimer's disease survive to severe and terminal stages which they may fear. Alzheimer's disease at this stage should be considered a terminal disease for which palliative care is indicated. Importance of advance directives, promoting previous wishes of the person who was developing dementia and who subsequently lost decision-making capacity, and limitations of these directives are discussed. Information in this review is based on author's knowledge and clinical experience that were updated by searches of PubMed.
  1,841 315 -
ORIGINAL ARTICLES
Beneficial effects of a negative ion patch on eccentric exercise-induced muscle damage, inflammation, and exercise performance in badminton athletes
Chin-Shan Ho, Mon-Chien Lee, Chi-Yao Chang, Wen-Chyuan Chen, Wen-Ching Huang
January-February 2020, 63(1):35-42
DOI:10.4103/CJP.CJP_33_19  PMID:32056985
Complementary and alternative medicines (CAMs) are widely applied and accepted for therapeutic purposes because of their numerous benefits. Negative ion treatment belongs to one of the critical categories defined by the National Center for CAM, with such treatment capable of air purification and ameliorating emotional disorders (e.g., depression and seasonal affective disorder). Negative ions can be produced naturally and also by a material with activated energy. Exercise-induced muscle damage (EIMD) often occurs due to inadequate warm up, high-intensity exercise, overload, and inappropriate posture, especially for high-intensive competition. Few studies have investigated the effects of negative ion treatment on muscular injury in the sports science field. In the current study, we enrolled badminton athletes and induced muscle damage in them through eccentric exercise in the form of a high-intensity squat program. We evaluated the effects of negative ion patches of different intensities at three points (preexercise, postexercise, and recovery) by analyzing physiological indexes (tumor necrosis factor [TNF]-α, interleukin [IL]-6, IL-10, creatine kinase [CK], and lactate dehydrogenase [LDH] levels) and performing a functional assessment (a countermovement jump [CMJ] test). We found that a high-intensity negative ion patch could significantly reduce the levels of TNF-α, an injury-associated inflammatory cytokine, and related markers (CK and LDH). In addition, muscular overload-caused fatigue could be also ameliorated, as indicated by the functional CMJ test result, and related muscular characteristics (tone and stiffness) could be effectively improved. Thus, the negative ion treatment could effectively improve physiological adaption and muscular fatigue recovery after EIMD in the current study. The negative ion patch treatment can be further integrated into a taping system to synergistically fulfill exercise-induced damage protection and functional elevation. However, the effects of this treatment require further experimental validation.
  1,751 376 1
Can royal jelly protect against renal ischemia/reperfusion injury in rats?
Mohammad Reza Salahshoor, Cyrus Jalili, Shiva Roshankhah
May-June 2019, 62(3):131-137
DOI:10.4103/CJP.CJP_36_19  PMID:31249267
Royal jelly (RJ) is a honeybee secretion, has numerous medicinal properties in particular antioxidant activities. Ischemia/reperfusion (I/R) is one of the main challenges in acute kidney damage. This study was designed to assess the anti-inflammatory and protective effects of RJ against I/R-induced renal disorders. Forty male rats were randomly divided into four groups (n = 10) as sham (0.9% saline) group, I/R group, RJ group (treated for 15 consecutive days by gavage with 300 mg/kg/day RJ), and I/R + RJ group that were pretreated for 15 consecutive days by gavage with 300 mg/kg/day of RJ. The I/R-induced renal inflammation was evaluated by determining leukocyte infiltration and mRNA expression level of intercellular adhesion molecule-1 and tumor necrotic factor-alpha (TNF-α). Antioxidant capacity of kidneys and thiobarbituric acid reactive species was measured in kidneys for the evaluation of oxidative stress. In addition, the diameter of renal glomeruli, kidney function indicators, and serum nitrite oxide (NO) levels was determined. The I/R increased the completely measured parameters, except the tissue ferric reducing/antioxidant power (FRAP) level, which was decreased compared to the sham group (P < 0.05). However, pretreatment with RJ reduced significantly blood urea nitrogen, kidney malondialdehyde, creatinine, glomerular diameter, leukocyte infiltration, levels of TNF-α, adhesion molecule-1 expression, and NO and increased tissue FRAP compared to the I/R group (P < 0.05). It seems that RJ administration improved I/R-induced acute kidney injury.
  1,837 278 2